We are all doomed. Everything is toxic.

We are an extremist society. We diet. We binge. We fear vaccines. We love viagra. We won’t touch gluten. We pop antibiotics like candy. At some point we decided that we know better than trained professionals. So we self diagnose. We self medicate. We classify any substance we don’t know as “toxic” without evidence and sometimes in spite of overwhelming evidence to the contrary (seriously Vani Hari, go away).

To be clear, “toxic” is an adjective that encompasses not only the substance itself but also the dose and route of exposure. If you want to call something “toxic,” you have to be specific about all three factors. I mean, water can be toxic if you consume too much of it! I know that sounds like bullshit, but it’s totally real (1). So be careful before you casually toss out the word “toxic.”

As an advocate for science literacy, I fully support people’s efforts to be aware of and understand the items they put in their bodies. Unfortunately, many people only take the time and effort to do the first part. They scrutinize ingredients in food and medicine, but don’t actually know what those ingredients are or what they do when they enter your body. They google thoughtlessly and reverently, sifting through thousands of hits trying to find answers. But when you treat Google like God, sometimes you end up with bad answers.

Imagine this scenario: You’re at your crunchy neighborhood grocery store looking for a sweet fix. You read the ingredients on the back of an ice cream container and see polysorbate 80. Wait, WHAT? What is that?? It could be toxic! You quickly google it and someone, somewhere has decided it’s bad for you. So you stop eating ice cream forever.

How tragic would that be!? No more ice cream? Ever? No thank you. I’ll just be over here enjoying my toxic ice cream!

But that’s because I know what polysorbate 80 is and that it isn’t toxic… Actually, if I’m being honest I totally didn’t know what it was prior to writing this article. BUT I knew what to google and where to look for pertinent information. Now I usually go straight to PubMed (basically google for scientific papers) for my information because I am a masochist and like to read primary scientific papers with data and methods and stuff. For an easier to read, yet trustworthy source for vaccine information, I recommend sites that are affiliated with pediatric hospitals and organizations. The Vaccine Education Center  (part of the Children’s Hospital of Philadelphia) is one of my favorites. I also love the journal the American Academy of Pediatrics puts out.

So yes PLEASE ask questions. Be skeptical. It’s your body after all! But perhaps consider the answers and sources a bit more critically before crying “toxin.” And since the chemicals in vaccines get called toxins on a daily basis, I figure why not start there. [Note: I will only be discussing the acute toxicity of the components. Come back for the long term stuff.]

Artwork by Maddie McCormick

If you are really curious, you can get the full list of ingredients and processing specifications for every vaccine from this website. But each insert is pretty hefty and I’m sure most people really don’t want to read them because most people are not super nerds. So for all the normal people in the world, here is a more simplified list of ingredients utilized in vaccines.

Interestingly enough, if you go onto some of the anti-vax websites (here is one for kicks) and look at their discussion of vaccine ingredients, they will often pull that second document up as if it’s proof of something shady. They then go through all the nebulous items (amorphous aluminum hydroxyphosphate sulfate, anyone?) and try to convince readers of how dangerous each one is. To be fair, some of the references are legitimate scientific papers. Some of the information is even true! If they weren’t so extremist and fear mongering, I’d actually give them a gold star for effort. But when dissecting their arguments, it’s clear that some of the writers have no idea how basic chemistry works. So I’m going to go through the ingredients in childhood vaccinations based on what purpose they serve and address the controversial items along the way. [Note: I will not discuss the flu vaccine ingredients since the vaccine changes every year]

All the chemicals and stuff in vaccines can be divided into two categories:

  1. Items used during the creation of the vaccine backbone.
  2. Items added to the final vaccine product

Items used during the creation of the vaccine backbone.

I’ve already discussed all the different types of vaccine backbones. As you may guess, each one is created with a slightly different method. Despite these differences, every vaccine goes through a purification step that removes everything but the actual vaccine itself. This means that most reagents used in the production of the vaccine backbone never make it into the final product (2)! Yes, I’ve just said the same thing twice. It’s that important. It’s quite possibly the most important thing to take away from this whole article. Such ingredients are mentioned for full disclosure in case a bit slips through all the processing steps. But if they are present, it’s in tiny undetectable “trace amounts” that produce no effect biologically (34). These ingredients serve three main purposes: to grow the microbe, to wreck the microbe and to purify the microbe.

  1. Grow the Microbe

Food for the bug (Any item that has the word media, cell, yeast, or egg in it). Every vaccine starts with some sort of living entity. Viruses are grown in mammalian cells or, in the case of flu, chicken eggs. Proteins are made by cells (often yeast, although HPV is done in insect cells which is weird). And of course bacteria are bacteria. In order to keep something alive, you need to feed it. Food for cells is always some sort of “media” (sciencey word for a liquid full of nutrients- vitamins, carbohydrates, etc 5). Occasionally this media is supplemented with some sort of animal blood serum (Not as gross as it sounds, it’s just more proteins and what not). All of these things are completely natural biological products. Often times they are human derived products. If you think about it, microbes infect animals so that’s where they want to live. If you want to keep a microbe alive while you are making a vaccine, you need to use animal products to do so. You need to mimic the microbe’s natural environment.

Now, some people have moral objections to the use of human generated cell lines and cultures. I don’t understand it, but I respect ethical stances when they are consistently held. If you are one of these people, then you do you dude. But you should probably avoid all other medical treatments, particularly ones for cancer because they too were produced and tested on human cells.

Another concern I’ve seen in response to the use of mammalian cells and products is the fear that without blood typing, a child could develop symptoms similar to serum sickness or a transfusion reaction (claimed here). This happens when your immune system attacks a mismatch in your blood stream because it looks foreign (6). There are two main reasons why this fear is silly. One- All this stuff is removed. If anything remains, it’s usually only protein and it’s not enough to cause a reaction. Two- vaccines are not administered intravenously (more on that later) so they won’t be in your bloodstream to cause a reaction in the first place (7).

Antibiotics are used to reduce contamination from outside sources. You only want your favorite microbe in the mix at the end. Anything else could compromise the vaccine. Since bacteria and fungi are present in the air, creating a sterile environment is too challenging. Thus antibiotics are used to prevent the unintentional inclusion of extra microbes. They are a bit harder to purify out at the end of this phase so you’ll see antibiotics in the inserts quite a bit actually. Only drugs that have been approved for use in humans are used though, so the only concerns should be allergies to medications and even these are unlikely (8).

Salts are used to regulate the pH of the growing environment. Biological systems require a very precise pH (usually 7ish which is neutral) in order to stay alive. Too acidic, things die. Too basic, things die. God forbid, you accidentally kill your microbe before the appropriate time. And since salts are quickly modified by the growing environment to become harmless elements (much like table salt dissolves in water) they are non-toxic.

  1. Wreck the Bug

Chemicals such as glutaraldehyde and formaldehyde allow you to kill microbes for inactivated and toxoid vaccines.

These chemicals get discussed amongst the vaccine hesitant allllll the time. I’m like 90% sure this is an ick factor thing. Yes, formaldehyde is used in the processing of dead bodies in mortuaries, but really it isn’t as gross as you are probably thinking. Formaldehyde is used in A TON of products from shampoos to mouthwash as a sterilizing agent. In other words it’s used to clean things and make sure there are no live organisms in it. Duh that’s why people use it to kill microbes for vaccines (9).

Of course aside from the ick factor, there is also a great deal of concern about the safety of using formaldehyde. This is partially because the International Agency for Research on Cancer has deemed it a suspected carcinogen (10) and partially because of the side effects listed on the material safety data sheet (MSDS).

Please for the love of science and all things beautiful in the world, DO NOT use MSDS sheets to get your information about chemicals. They will just scare you. MSDS sheets go through all the physical data including molecular weight and specific heat, as well as all the health cautions for every chemical ever. They prepare scientists for every possible exposure to a chemical they could possibly have. They are meant for people like me in moments when we accidentally dump formaldehyde on our faces. They are not meant for the general public to scrutinize the tiny amounts present in their food, cleaning supplies, toiletries and medicine. Just to emphasize this point, here are the MSDS sheets for formaldehyde and acetic acid (commonly known as vinegar). Notice that they receive the same number for their overall health risk. They even have a lot of overlap in possible acute health hazards. Don’t even try looking at the one for alcohol. The possible chronic health effects are enough to keep anyone sober. But again these are the warnings for people in laboratories!

Now I’m not going to sit here and tell you that these chemicals can’t be dangerous, because they can. However it’s dependent on the dose and the way you were exposed.

For example, I work with a version of formaldehyde in lab and we have to be in a special hood that filters the air to prepare the diluted solutions we use. This is because A. I’m working with large quantities (I’m talking grams (plural) of the pure form and liters of a 10% or 4% solution) and B. inhalation is the route of exposure that will most likely result in adverse effects, such as cancer (11).

In contrast, vaccines contain less than .5 mg (DTaP) or .02% (Polio) formaldehyde and it goes nowhere near your airways. I’m sure that still seems like a shit ton to put in your body, especially a baby body, but you produce about .2 mg/mL (a normal infant has about 1.1 mg circulating) in your own body at any given time (12). I mean you could potentially be exposed to more formaldehyde from your mouthwash, makeup, or ambient air than from a vaccine (13).

Detergents allow you to break apart cells that were growing your virus or proteins. These are particularly necessary in subunit and conjugate vaccines. The detergents scientists use are a bit stronger than those used in your laundry or dishwasher but they are still completely safe.

  1. Purify the Bug

First you remove your vaccine backbone from the environment you grew it in (aka everything we’ve talked about thus far). That’s easy for things like cells and debris (from breaking open a subunit vaccine for example) since they are so much larger than the vaccine itself. You can use a physical filter to remove them.

For the smaller stuff you can use chemicals to remove other chemicals. I know that’s a super weird concept to wrap your head around and I’m seriously banking on people either remembering high school chem lab or being heavy drinkers with this one. If anyone has done a Cement Mixer shot, you might know what I’m talking about. When you add lemon juice to Bailey’s, the cream in the Bailey’s starts to curdle. The shot gets chunky and nasty within like a minute. That’s because the acid (a chemical) causes the casein (a protein/chemical) to aggregate into chunks. Yum. Anyways, biologists use chemicals like alcohols and ammonium sulfate to clump things in the vaccine mix which can then be filtered out just like the bigger stuff.

Items added to the final vaccine product.

In other words, anything that is intentionally included in the liquid that you get shot in the arm with. These compounds ARE in the vaccine in defined concentrations and play a variety of roles as listed below.

Adjuvants are added as a way to alert your immune system to the presence of danger (the thugs and fire in my car analogy). If you see any compound with “aluminum” in it, it’s an adjuvant.

Because adjuvants are present in many vaccines, a great deal of concern has been raised about aluminum toxicity. And if you read any anti-vax website, upon first glance, you can see why. They do a lot of impressive (wrong, but impressive) math about weight and tolerance and the amount of aluminum in a vaccine, and come out at the end with this crazy number suggesting that the Hep B vaccine doses your baby with 14 times the allowable amount of aluminum. Now that is a scary number! It’s also completely irrelevant when you consider that the FDA guidelines they reference for their calculations are for IV aluminum toxicity (14). That means that every single anti-vax website I’ve looked at is operating under the impression that vaccines are delivered into the bloodstream, when in fact they are delivered intramuscularly (15). I completely understand how someone not well versed in science or medicine could confuse this. A needle is in fact jabbed into your arm and a liquid is squirted into your body. I bet if I took a bunch of random people off the street, at least a few of them would have never even contemplated the difference. If, however, you are claiming to understand the science of vaccination then you should at least understand the route of administration.

Ironically, the dose of aluminum present in vaccines is not acutely toxic because of the route of injection. Slow release from the site assures that the level of aluminum in the bloodstream stays well below the allowable level in infants. (1617). Furthermore, just as with formaldehyde, vaccines are a negligible source of aluminum in the grand scheme of the world. There is more aluminum in baby formula than in vaccines, even when you consider multiple shots in one sitting. As far as long term side-effects, well that’s a topic for another day.

There is also a lot of buzz about adjuvants causing “unnecessary” side effects. For example this anti-vax website has quotes from doctors stating their concerns about certain vaccine ingredients. With regards to squalene (an adjuvant) one doctor’s concern is that “the body identifies [squalene] as a threat and creates antibodies to attack it.” Well, yes. That’s the point you idiot. Since the purpose of adding an adjuvant is to stimulate the immune system, stimulating the immune system is also a side effect of the adjuvant (18). Often, people will notice swelling at the injection site (especially with a tetanus shot). This inflammation is a hallmark of local immune activation and is actually a good sign (19). Similarly, others will develop a fever or symptoms similar to allergies as a result of immune activation from adjuvants. I think a lot of people don’t understand why adjuvants are necessary and so they consider them a superfluous danger. Really they are more of a necessary annoyance.

Emulsifiers  like polysorbate 80 and polysorbate 20 keep things mixed. Just like oil and vinegar separate in salad dressing, vaccines have components that separate over time. And just like salad dressing needs to be shaken, vaccine manufacturers use emulsifiers to keep vaccines mixed. This is absolutely critical so that each vaccine dose has the correct proportions of each item. They are also totally safe (20). So safe that they are somewhat ubiquitous in household items, like the ice cream I mentioned in the very beginning. In fact they are in much higher doses in ice cream than they are in vaccines. So cheers to ice cream and remaining HPV free.

Preservatives/Stabilizers maintain the shelf life of vaccines. Vaccines are much more complex than let’s say, ibuprofen, which is just a chemical. Ibuprofen can sit on your shelf for ages without degrading into something else. Vaccines on the other hand contain biological components as well as chemical components. Think of it like soup. If you made a pot of soup and then left it on the counter, eventually it would no longer be edible. It might grow mold or the carrots would disintegrate or the broth would evaporate. You could put the soup in the fridge and that would make it last a little longer. OR you could can the soup and put a bunch of chemicals and preservatives in it and then it could remain soup through a nuclear fallout. Preservatives and stabilizers keep the vaccine in the exact form it was manufactured in throughout processing, packaging and use. The two biggest issues people have with these ingredients are the use of amino acids (which is bizarre) and the use of thimerosal (which is complicated).

The idea that the amino acids in vaccines will make your baby develop an autoimmune disorder is a fascinating myth (claimed here). The two thoughts that form the foundation of the argument are actually true individually. The first is that our bodies don’t make all 20 amino acids (building blocks of protein) so we have to get some of them (essential amino acids) from food (21). The second is that if proteins enter our bloodstream before we eat them our body will recognize them as bad and will mount an immune response (this is actually only kind of true and I’ll probably write an entire article on it because it’s rad). However when you put the two together it doesn’t support the argument that vaccines cause autoimmunity against essential amino acids. Babies receive all 20 amino acids within the first days of life from breast milk or formula (22). Like seriously, oh my god, what are you doing to your child that they have not digested all 20 amino acids before they get vaccinated? Also, as discussed before, vaccines aren’t delivered into your bloodstream (15). So it’s a moot point. Or a moo point if you are a Friends fan.

And then of course there is the dreaded thimerosal. Okay first off, everyone needs to calm down because thimerosal is only present in a hand full of flu shots, one brand of mening shot, and one brand of DT shot. If you don’t want to deal with thimerosal, you can easily avoid it. Second, thimerosal isn’t the same thing as mercury; it is a mercury containing compound. Third, there are a lot of different kinds of mercury and they are not created equally. Fourth…. actually I’m just going to stop. I will talk about thimerosal on another day when I discuss the Andrew Wakefield/Autism controversy.

As you can see, there’s a lot to consider when you break down each vaccine into its components. What’s necessary? What’s a risk? What and who do you trust?

It’s important to keep in mind that anti-vaxxers are not the first people to question the ingredients and safety of vaccines. Every drug that you can get your hands on (legally) in the United States has been rigorously tested by multiple organizations for safety. This isn’t the old days where I could just borrow the neighbor’s kid and shoot him up with smallpox. So when someone claims that they know more than the thousands of scientists, manufacturers, doctors, nurses and government employees who work together to produce and approve vaccines, it’s because they have an inflated ego and an overzealous googling habit.

And when I say I trust vaccines, it’s because I trust the data behind their creation. Are they perfect? No. Can they be improved? Duh. Is it worth it? To me it depends on the shot. I personally don’t get the flu shot (mostly because I’m lazy), but you can be damn sure that I’d take the rabies shot in a heartbeat if necessary.

And I think that’s where I most differ from the anti-vax community. It’s not because we have different opinions about vaccines. It’s because I am not an extremist. I do not claim that everything in vaccines is 100% safe for 100% of people. Every human body is different. It is wildly irresponsible to make claims like that. You should ALWAYS ask questions before taking ANY kind of medication.

So if you want the truth… Everything in vaccines can cause adverse effects. Formaldehyde can cause cancer. Aluminum can cause inflammation. Egg proteins and Antibiotics can cause an allergic reaction. Acids can melt your skin. Ethanol can cause liver failure. Sucrose can cause obesity. Salt can cause dehydration.

But at least we won’t die from Tetanus.


Kill It. Maim It. Mimic It.

Artwork by Maddie McCormick
Artwork by Maddie McCormick

In my field, stories of famous scientific discoveries are like childhood fairy tales. Ask any immunologist and they can tell you the one about Jenner, the milkmaids, and the neighbor boy (wow, that almost sounded dirty).

Jenner notices that local milkmaids who had had cowpox never seemed to get smallpox. He reasons that cowpox is just a less dangerous version of smallpox and that maybe your body learns to recognize the pox-causing agent by being exposed to cowpox. So he takes some gunk (that’s the technical term) from a cowpox pustule and jabs the neighbor boy with it. He then exposes the neighbor boy to smallpox and lo and behold the boy doesn’t get sick.

And there you have it, the beginning of modern vaccination. These days, vaccination has a bit more finesse to it. However the same basic principle still applies. You take a dangerous microbe, find or create a less dangerous version of it, and give that version to someone. In this way you can teach the immune system to recognize the dangerous microbe.  More specifically, you are teaching your immune system to recognize parts of the dangerous microbe called antigens.This recognition is called immunological memory and it allows your body to fight infection quicker and smarter (1). It’s the reason you only get chicken pox once (well, if you are lucky).

To be successful, a vaccine must strike a very delicate balance in the human body. On the one hand you want your vaccine to really trigger the immune system. Your body is constantly interacting with microbes. Most of these are completely harmless and your immune system has a way of realizing this and giving those microbes a free pass. The technical term is called “tolerance.” If you make your vaccine super wimpy then your immune system will think that it, and anything that looks like it, are benign and learn to tolerate them. If this happens, you will be totally screwed if you get the scary, dangerous version later because your immune system won’t care (2).

On the other hand, you don’t want to risk actually getting sick from the vaccine. If the microbe isn’t wimpy enough, then you run the risk of actually developing symptoms from the vaccine itself, and that’s no good either!

With the progress we have made in modern medicine, this balance can be achieved in a variety of ways. All vaccine types, however, utilize three general strategies to make the microbe wimpy. You can kill it, maim it, or mimic it; each has its merits and its drawbacks.

To illustrate this, I’ve decided to get fancy and use an extended metaphor of a car accident…

Sometimes cars (microbes) cause car accidents (disease). Not all cars do, but sometimes a car is just too fast or powerful (a pathogen) and thus wreaks havoc on the road. In order to prevent car accidents, we are training the police (your immune system) to recognize the overly aggressive cars. To do this, we are presenting the police with a broken down version of the super aggressive cars (vaccine). The only catch is, we aren’t telling the police we are doing this (3).

Kill It (Inactivated or Toxoid Vaccines)

Artwork by Maddie McCormick
Artwork by Maddie McCormick

1. Inactivated Vaccines consist of a whole microbe that has been killed with chemicals, heat, or radiation. 2. Toxoid Vaccines are similar, except that instead of a whole microbe, only the toxin from the microbe is being destroyed. This is always achieved with chemicals (4).

Pros: Aside from the chemicals used, this vaccine platform is really safe. It cannot cause the disease that the original microbe can cause because it’s dead.

Cons: It’s pretty wimpy so you must often combine the vaccine with immuno-stimulatory components known as adjuvants (5) so you don’t develop tolerance. The adjuvant tells your immune system that something foreign and bad is present. Thus when your immune system finally “sees” the vaccine with the adjuvant, it just assumes that they are both bad.

I equate this first strategy to taking a car and then removing the entire engine. It cannot move; therefore, it cannot cause accidents so it is safe to put on the street. It also clearly still looks like a car, so the police will recognize it if they ever see it again. The only problem is that since we took the motor out, upon first glance the police will have no idea the car is bad. It’s not doing anything crazy, so how will they know that they are supposed to remember it? The solution is that we put Lord Voldemort next to it (an adjuvant) who lights some nearby storefronts on fire to capture the police’s attention.

Maim it (Subunit, Conjugate or Live Attenuated Vaccines)

Maim It.
Artwork by Maddie McCormick

3. Subunit Vaccines literally just consist of antigens (usually proteins) that are normally produced by the microbe but are no longer attached to a living or dead microbe. You can do this in one of two ways. You can grow a lot of the microbe and then cut it up into tiny pieces and purify out the proteins you want. Alternatively, you can teach other cells to grow the protein for you and make mass quantities of it (4).

Pros: They can direct your immune system to an exact part of a microbe. For example, you can make sure that your immune system really efficiently recognizes the outside of the microbe or another feature of the microbe that doesn’t change over time. It’s also ridiculously safe because the proteins are no longer attached to a microbe.

Cons: Proteins are just proteins. You have to toss an adjuvant in with this kind as well, to get the immune system revved up. This is where a special subset of subunit vaccines called 4. Conjugate Vaccines comes into play. Conjugate vaccines link the aforementioned subunits to something the immune system already knows is bad, like a toxoid (4).

This kind of vaccine would be the equivalent of taking a dangerous car and cutting it up into pieces. Then you would take the really distinctive and really important pieces, like the hood and the engine respectively, and spread them all over the side of the freeway. Not as subtle as the silent whole car, but still a little too subtle to catch the attention of the police. So then you set it on fire and it becomes a conjugate vaccine.

5. Live-attenuated vaccines are made from microbes that are, as the name suggests, alive but weakened to the point where they cannot cause disease. There are many ways to do this but the general idea is to remove or mutate genes that make the microbe dangerous. The only issue is that when you are mutating genes, sometimes you have no idea whether or not you are actually creating a legitimately safe microbe (4).

Pros: It creates the absolute best immune memory. Because it is still alive, it triggers the immune system in a very natural and robust way. Because the immune response is so good, sometimes you can get lifelong immunity to microbes with just one dose.

Cons: To quote Jurassic Park… “Life finds a way.” You always run the risk (it’s a tiny risk, but it’s there) with live-attenuated vaccines that somehow they will mutate back to their disease-causing state before your immune system clears them. For healthy adults this is highly unlikely. Children, the elderly, the immunosuppressed, etc. however, take longer to clear vaccine from their bodies. This gives the microbe a longer window to “find a way.”

This one is a little bit harder to compare to a car, but I will try. Imagine you throw a wrench into the car. Your car can’t cause a car crash if there is a wrench in the engine because it can’t really move. Yet somehow you are still able to turn it on, flash the headlights and putt putt down the street in neutral with the engine smoking. This is definitely going to catch the attention of the police so they will for sure remember the car. There is also, however, the chance that the wrench will wiggle its way loose while rolling down the street and then the car will be able to go off and cause an accident. This chance is slim, but real. So you toss a few extra wrenches in the engine just to be sure.

Mimic it (Recombinant Vector Vaccines)

Mimic It.
Artwork by Maddie McCormick

6. Recombinant Vaccines make a living, wimpy microbe (that’s the vector) look like it’s a bad microbe. To do this, you mess with the wimpy microbe’s DNA so that the outside of it resembles a dangerous microbe. The important part is not to mess with it too much, so that you don’t turn the wimpy microbe into a dangerous microbe (4).

Pros: The microbe used is in fact alive so it does stimulate a natural and robust immune response. But since it has no way of truly becoming the full-fledged, dangerous microbe that it’s pretending to be, it’s way safer than a live-attenuated vaccine.

Cons: This type of vaccine can be somewhat confusing to the immune system because you have both wimpy parts and dangerous parts. Your immune system may not know what to remember. Additionally, your immune system could recognize it for what it is (wimpy), clear it, and not remember it at all. Scientists are still trying to sort that issue out which is why these are mostly still experimental.

This is like taking an old station wagon and dressing it up to look like a race car and then having it drive down the freeway slightly above the speed limit. Underneath it all, it’s still a station wagon and isn’t going to terrorize the streets. But it looks big and bad and so the police think it’s big and bad and make note of it for later.

So where do all these vaccine backbones rank in terms of safety? I wish there was a simple answer to that. The biggest safety concern in vaccination is that a patient will develop the disease that the vaccine is supposed to protect them from. This can happen for one of two reasons: either the vaccine wasn’t potent enough or the vaccine itself caused the disease. The first is more of an issue of efficacy, while the second is more an issue of risk. Since these two reasons are very much dependent on the starting microbe, it’s hard to discuss the efficacy/risk balance of the different platforms as a whole. You almost need to do it vaccine by vaccine.

For example, within the most controversial type of platform (live-attenuated) you have a range of vaccine safety. The live-attenuated vaccine for yellow fever is considered the gold star among vaccines. It is highly effective but without the risk of developing yellow fever itself. And to be perfectly honest, biologists are still not certain why it is so amazing (6). In contrast, while the live-attenuated poliovirus vaccine is equally as effective (with just one dose, you can get full protection from poliovirus disease) there are cases of people developing polio-like disease from the vaccine itself (7). These cases are rare and far outnumbered by those who are protected, but they are real. Thus, live attenuated vaccines are highly effective but can have variable levels of risk.

What it really comes down to, as both the creator and the consumer, is what level of risk you are willing to take to get protection. Just know that, as the consumer, there are so many organizations that have pondered that question before you (8). Because of this the risks of vaccination are dramatically, comically low compared to the benefits of protection.

Vaccine Platform Chart
In bold are the recommended childhood vaccinations. [Note: some of the subunit vaccines will have “recombinant” in the name but it has a different meaning in that context. HPV can be considered a subunit or a recombinant vaccine depending on your definition of vector]

Down The Rabbit Hole

the rabbit hole - Maddie McCormick
Artwork by Maddie McCormick

The online anti-vax community is a deep, dark rabbit hole of information and ideas. I would start with a simple google search of “vaccine risk”, somehow work my way through a series of hyperlinks, and find myself, days later, on some random blog with tragic stories of infant death. Now as touching (read: morbid) as some of these stories are, I am an asshole, and poetic prose does nothing for me. In the anti-vax community, however, pathos is like the number one persuasive writing strategy. I totally get it. I just did that with my mom’s TB ordeal. The difference is that I told a coherent story filled with scientifically valid information.

In contrast, the anti-vax literature (I use that term loosely) mixes story-telling, partial truths, and opinions together in a convoluted way. It’s really hard for readers to orient themselves! To add to the confusion, there is no single justification against vaccination. The community as a whole has a really hard time formulating a cohesive position other than “vaccines are bad” and even that is horribly oversimplified. This confusion is particularly obvious if you scroll down to the comments sections of any article written about vaccination (for or against).

Now, I’m a big fan of comments sections. Most of the time I enjoy them more than the article I’m reading in the first place. Especially on sites like Buzzfeed where everything is meant to be humorous, and yet people still find a way to be righteously indignant. That’s the greatest! Anyways, it’s always simultaneously infuriating and hilarious to read because people get SO heated. And the most heated (and in my eyes therefore the most crazy) people on the Internet are those engaging in a vaccine debate.

This is my impression of what a typical conversation on an anti-vax website looks like (I hope this goes without saying but I’ve used an impossible side effect so as not to offend anyone who may have experienced legitimate side effects from vaccination. Don’t worry, you will not grow a third leg with your next booster):

Slide1It’s an incoherent mess of people stating their (often times greatly misinformed) opinions, instead of having a discussion. No one actually listens and therefore no one actually responds. They just attack. I always want to chime in with some primary literature but I know I’d get eaten alive. Don’t get me wrong, the pro-vax people can get just as nasty as the anti-vax, so I’m not saying only the anti-vax people play dirty. It’s just that the anti-vax people come at you from so many different angles. If I did make a comment about the safety of aluminum, for example, someone would likely reply with something about testing in poor African children. How do you argue with that? How do you even understand that kind of opposition?

I know I promised a long time ago that I would go through all the arguments the anti-vax community presents. I suck at deadlines so I’m still working on that. I think the first and most important step has been to try to figure out what those arguments are. So instead of trying to find the organization I’m going to organize the opposition myself. To me, the vaccine drama boils down to three main questions:

  1. Are they safe?
  2. Do they work?
  3. Should they be mandatory?

Eventually each of these will be hyperlinked (possibly multiple times), so think of this as your home base for vaccine information. The first topic I will address (soon I promise) is the safety of the individual ingredients. Because really the question about whether vaccines cause the egregious side effects parents see in their kids boils down to whether the components are safe or not. And the short answer is…. mostly.